Numerical modeling of response of monolithic and bilayer plates to impulsive loads
نویسندگان
چکیده
In this paper, we present and discuss the results of our numerical simulation of the dynamic response and failure modes of circular DH-36 steel plates and DH-36 steel–polyurea bilayers, subjected to impulsive loads in reverse ballistic experiments. In our previous article, we reported the procedure and results of these experiments [MR Amini, JB Isaacs, S Nemat-Nasser. Experimental investigation of response of monolithic and bilayer plates to impulsive loads. accepted]. For the numerical simulations, we have used physics-based and experimentally-supported temperatureand rate-sensitive constitutive models for steel and polyurea, including in the latter case the pressure effects. Comparing the simulation and the experimental results, we focus on identifying the potential underpinning mechanisms that control the deformation and failure modes of both monolithic steel and steel–polyurea bilayer plates. The numerical simulations reveal that the bilayer plate has a superior performance over the monolithic plate if the polyurea layer is cast on its back face (opposite to the blast-receiving side). The presence of the polyurea layer onto the front face (blast-receiving side) amplifies the initial shock loading and thereby enhances the destructive effect of the blast, promoting (rather than mitigating) the failure of the steel plate. In addition, the interface bonding strength between polyurea and steel is examined numerically and it is observed that the interface bonding strength has a significant effect on the performance of the steel–polyurea bilayer plates. The numerical simulations support the experimentally observed facts provided the entire experiment is simulated, employing realistic physics-based constitutive models for all constituents. ! 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Experimental investigation of response of monolithic and bilayer plates to impulsive loads
This article presents the results of a series of experiments performed to assess the dynamic response of circular monolithic steel and steel–polyurea bilayer plates to impulsive loads. A convenient technique to enhance the energy absorption capability of steel plates and to improve their resistance to fracturing in dynamic events, is to spray-cast a layer of polyurea onto the plates. Since poly...
متن کاملInvestigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments
We summarize the results of the response of monolithic steel plates and steel-polyurea bilayer plates to impulsive blast loads produced in direct pressure-pulse experiments, focusing on the deformation and failure modes of the plates. In these experiments, an impulsive pressure pulse is applied to a steel plate through water or soft polyurethane that simulates shock loading with a peak pressure...
متن کاملNumerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments
0167-6636/$ see front matter 2009 Elsevier Ltd doi:10.1016/j.mechmat.2009.09.009 * Corresponding author. Address: University of Ca Mechanical and Aerospace Engineering, 4909 Eng 9500 Gilman Drive, La Jolla, CA 92093-0416, USA. T E-mail address: [email protected] (S. Nemat-Nasser). Results of computationalmodeling and simulation of the response ofmonolithicDH-36 steel plates and bilayer steel-polyure...
متن کاملNonlinear Dynamic Response of Functionally Graded Porous Plates on Elastic Foundation Subjected to Thermal and Mechanical Loads
In this paper, the first-order shear deformation theory is used to derive theoretical formulations illustrating the nonlinear dynamic response of functionally graded porous plates under thermal and mechanical loadings supported by Pasternak’s model of the elastic foundation. Two types of porosity including evenly distributed porosities (Porosity-I) and unevenly distributed porosities (Porosity-...
متن کاملA Numerical Study on Aluminum Plate Response under Low Velocity Impact
In the present paper, a numerical study is performed to investigate the response of different plates aluminum alloys subjected to low velocity impact condition. In this regard, the square AA5083-H116 aluminum plates with dimensions 300×300 and 3 mm and 5 mm thick under low velocity impact are modelled, and a mesh convergence study is carried out to decide the appropriate number of elements. In ...
متن کامل